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Abstract

'\ The Message-Driven Processor (MDP) is a low-latency processing node for a scalable

fine-grain MIMD concurrent computer, the Jellybean Machine. Programs are executed
by passing messages through a low-latency network. Each MDP integrates a
processor, a memory, and a communication network. On top of this message-passing
model, the MDP supports a global virtual address space.

This thesis involves the design and implementation of a memory for the Message-Driven
Processor. The memory array can be accessed by index, by row, or as a set-associative
cache. Index operations are used to read and write memory. Row operations reduce
the latency in message-handling by providing special purpose buffers, Row Buffers that
access four words (a row) of memory simultaneously. Two Queue Row Buffers enable
buffering messages at two different priority levels as soon as they arrive from the
network. An Instruction Row Buffer acts as a small instruction cache. Set-associative
operations provide a translation mechanism to enable translating any object to its
associated item. MDP operating 'system routines use this cache to translate virtual
identifiers into global addresses.

The microarchitecture and the circuit design of the memory is developed. A test chip is
fabricated to verify the design. Evaluation of the row operations is presented.
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The Message-Driven Processor (MDP) is a low-latency processing node for a scalable fine-grain
MIMD councurrent computer, the Jellybean Machine. Programs are executed by passing messages
through a low-latency network. Each MDP integrates a processor, a memory, and a communication
network. On top of this message-passing model, the MDP supports a global virtual address space.

l This thesis involves the design and implementation of a memory for the Message-Driven Processor.
The memory array can be accessed by index, by row, or as a set-associative cache. Index operations
are used to read and write memory. Row operations reduce the latency in message-handling by
providing special purpose buffers, Row Buffers that access four words (a row) of memory simul-
taneously. Two Queue Row Buffers enable buffering messages at two different priority levels as
soon as they arrive from the network. An Instruction Row Buffer acts as a small instruction cache.
Set-associative operations provide a translation mechanism to enable translating any object to its
associated item. MDP operating system routines use this cache to translate virtual identifiers into

global addresses.
to verify the design. Evaluation of the row operations is presented.
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The microarchitecture and the circuit design of the memory is developed. A test chip is fabricated
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Chapter 1

Introduction

I would have you imagine, then, that there ezists in the mind of man a block
of waz, which is of different sizes in different men; harder, moister, and having
more or less of purity in one than another, and in some an intermediate quality.

. . . Let us say that this tablet is the gift of Memory.
— PLaTo0, in Diglogues, Parmednides, p. 191

The Jellybean Machine is a fine-grain concurrent machine that supports an object-
oriented programming model. Programs compute in a message-passing style. Computing
nodes are configured in a 2-dimensional grid. Each single-chip node integrates a commu-
nication network, a processor, and a memory. A processor is either a symbolic processor
or an object expert that performs operations on certain types of objects. The Jellybean
Machine is currently being developed by the Concurrent VLSI Architecture (CVA) group
at MIT under the supervision of Professor William Dally.

The Message-Driven Processor (MDP) [D*87] is the symbolic processing node for the
Jellybean machine. The message-handling overhead on a node is reduced by providing
hardware support to buffer and execute messages and to switch context rapidly. Messages
are buffered in the on-chip memory as soon as they arrive from the network. They are exe-

cuted through direct interpretation instead of the fetch-decode-execute loop of conventional

6
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CHAPTER 1. INTRODUCTION

processors. Fast context switching is supported by providing two sets of processor registers

and two message queues.

On top of this message-passing model, the MDP supports a global virtual address space.
The on-chip memory can be accessed as a set-associative cache to translate a virtual address

into its physical address.

1.1 Focus

This thesis focuses on the design of the memory for a prototype Message-Driven Processor.
Unlike conventional memory organizations that access separate Random Access Memories
(RAMs) and caches, the MDP uses one physical memory structure that can be accessed by
an index to read/write a single word, or as a set-associative cache to translate a key into

its associated value.
In addition, the MDP memory implements row operations to accomplish:
1. Buffering incoming messages from the network at two different priority levels to reduce
the total memory cycles needed to store messages in memory.
2. Providing fast access to the instruction stream by fetching 8 instructions from memory

at a time.

A test chip was fabricated to evaluate this design and the row operations preformance was
analyzed.
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1.2 Background: The MDP and the Jellybean Machine

1.2.1 Execution Model

The Message-Driven Processor transmits and executes messages at two priority levels. The
message header is the x and y-coordinates of the message’s destination node. The on-chip
communication networks routes a message to it’s final destination without disrupting the
processors. At it’s final destination, the message header is stripped off and the message
is buffered in one of the queues in memory according to its priority level. The queues are
circular FIFO buffers that hold the messages to be executed. The processor executes the
message at the head of the higher priority non-empty queue. If both queues are empty the

processor s in an idle state.

Messages consist of the message opcode followed by the message’s arguments. Message
opcodes are physical addresses of routines that support the object-oriented programming
model, code execution, storage allocation, and various other utilities. Frequently used
routines reside in the on-chip ROM. Once the appropriate routine is executed, a message is

dequeued from memory and the processor executes another message.

A translation look-aside buffer (TLB) is used to lookup any type of data associated
with a certain key. The message routines use this TLB to translate an object’s global
identifier (ID) into its physical address and to lookup the method that is associated with a

class/selector pair.

1.2.2 Architecture

The MDP consists of the Address Arithmetic Unit (AAU), the Register Arithmetic and
Logical Unit (RALU), the Control Unit (CU), and the Memory Unit (MU). These units
are connected through buses and some global signals. Each processor is connected to other

processors through a low-latency network [DS87).
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The AAU calculates an address to access the memory. It performs several functions to
support enqueueing, dequeueing and dispatching messages that arrive from the network. It
also supervises the instruction pointer, the stack pointer, and some status bits. The RALU
contains the register file and the hardware to perform logical and arithmetic operations on
data stored in the registers. It checks the type and range of arithmetic operations. The
CU fetches instructions from the instruction cache. It decodes and pipelines the instruction
stream into several commands and broadcasts them to the appropriate units. In addition,

it monitors and handles all the faults and traps generated by the other units.

The Memory Unit (MU), which is the focus of this thesis, provides storage for the
data and messages arriving from other processors. The unique organization of the memory
allows it to be accessed by index or as a set-associative cache. The Memory Unit supports
instruction fetching and message enqueueing by providing row operations that access four

words (a row in the memory array) simultaneously.

1.2.3 Performance

The MDP handles a message dispatch and switches context within 5 us. This low latency
in message handling allows concurrent algorithms to be supported at their natural grain

size of about 20 instructions.[Dal]

The prototype MDP will perform at 4 MIPS with a 36K-bit memory. The MDP will be
fabricated using a 2 um standard MOSIS process. The prototype Jellybean Machine will
consist of 4K nodes, with 2K Message-Driven Processors and 2K numerical object experts
(Reconfigurable Arithmetic Processor) [FD|. This machine will achieve 2G PTPS (pointer
traversals per second) and 2G FLOPS (floating point operations per second)[DL87)

An industrial version of the MDP will have a memory capacity of 4K words. A full scale
Jellybean machine will consist of 64K nodes, and its performance will scale accordingly.
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1.3 Literature Survey

1.3.1 The Evolution of Memories

In the past 40 years, computers have used a variety of memories such as delay lines, magnetic
drums, cathode-ray-tube storage, magnetic cores, magnetic film memories, semiconductor
memories, charge-coupled devices and magnetic bubbles. The driving force behind this
development is the need for increased density and speed and minimum power consumption.
For example, in the last 25 years at IBM, memory density has increased 280,000 times,
speed has improved 10-100 times, and power consumption per bit has decreased 20,000
times [P*81].

Semiconductor memories include Random Access memories (RAM) and read only mem-
ory (ROM). Random Access Memory implies that each location can be read or written with
equal access time. In ROMs, binary information is easily read out but is written either per-

manently at fabrication time or electrically by the user.

The first commercial semiconductor memory was used in the IBM System/360 Mode! 85.
In MOSFET memories, each bit is stored on a capacitance. Early memory cells were static
made of a set of cross-coupled inverters to store the information and pass gates to access
it. To reduce the CMOS cell size and dynamic power dissipation, the p-channel transistors
were eliminated producing the four-transistor cell. The three-transistor cell eliminated the
feedback loop within the cell and stored charge on a capacitance. Single transistor DRAM
cells employ one transistor to access the storage capacitance. Figure 1.1 illustrates the

evolution of memory cells.

The first commercial MOS DRAM was Intel’s 1103. It was 1K words by 1 bit array.
Processing technologies has allowed memory densities of 1M bits and-experimental 4M and
16M bits per chip. Scaling feature sizes to less than 1 um in’d using additional layers of
polysilicon have reduced the size of the 1-transistor DRAM cell. Minimum DRAM cell sizes

are achieved through Surrounding Hi-Capacitance cell structures, in which the side-walls
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capacitance of the trench form the storage capacitor. Matsushita Semiconductor Research
Center, Osaka, Japan, reported a cell size of 1.5um by 2.2um, and a trench depth of 2.5um
using a 0.5um N-well CMOS process [1*88]. The decrease in cell size has caused an increase
in the soft error rate, the inter-bit line and bit line/word line coupling noise. Layout was
strained by cell/sense amplifier pitch matching. Several memory array organizations such
as folding and twisting the bit lines and dividing the array into several independent blocks

have reduced these problems.

1.3.2 Advances in Cache Organizations

Besides technology advances, new memory organizations made memory access faster. "Look-
aside buffers”, fast registers that stored recently accessed data, were first were first intro-
duced by Leon Bloom in 1962 [BCP62]. These fast local memories, or caches, were first
commercially introduced by IBM in their System/360 model 85. The cache size ranged
form 16 to 32 Kbytes. Also, some computer organizations provide two different caches, an

instruction cache and a data cache.

1.4 Design Constraints

The prototype MDP will be fabricated using a standard 2um double-metal CMOS MOSIS
(MOS Implementation Service) process. The available technology and the size of available

chips (7900um x 9200p4m) constrained the memory’s basic cell design and the size of the
memory array.

Our RAM design uses the 3-transistor memory cell. This cell occupies more area than a
1 transistor DRAM cell with the same storage capacitance using the same process. However,
it is a more conservative design considering the variations frithin MOSIS processes. The
size of the memory array was constrained to 1K words (36 bits/word) to fit on chip along
with the rest of the MDP.
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1.5 Summary

This thesis reports the design of the Memory Unit for the Message-Driven Processor. It
includes the design of the memory and the fabrication of a test chip. It evaluates the
implementation of the queue row buffers, the instruction row buffers, and the hardware

support of the address translation mechanism.

Chapter 2 of this thesis is a description of the MDP's memory microarchitecture. In
chapter 3, I describe the hardware design of the memory system, and in chapter 4, I describe
the memory test chip. Chapter 5 is an evaluation of two architectural features of the MDP
memory: the queue buffers and the instruction buffer. Chapter 6 is a summary and some

suggestions to improve this memory design.




-

Chapter 2

Memory System
Microarchitecture

'Tis in my memory locked,

And you yourself shall keep the key of it.

—~— SHAKESPEARE, in Hamlet, I, isi, 75

The MDP’s Memory Unit (MU) provides storage for objects and messages. The memory
array can be accessed by index or as a set-associative cache. The Memory Unit’s microar-
chitecture optimizes writing new messages into memory by using two row buffers, the Queue
Row Buffers (QRBs), to transfer a row (4 words) into memory simultaneously. Fetching in-
structions is optimized by fetching a row (8 instructions) from memory at once and storing
it in an Instruction Row Buffer (IRB).

This chapter describes the Memory Unit’s functionality, its interface with the other

MDP units, and its internal elements.

14
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2.1 Functionality

The Memory Unit executes the operation specified by the MDP's Control Unit. The read
and write decoded instructions load and store a data word from/to memory respectively.
Four other decoded instructions access the memory as a set associative cache. The zlate
instruction translates a key into its associated entry. If a cache miss occurs, a fault handler
is invoked. The probe instruction checks if a certain key is present in the cache and returns
a boolean value indicating if the key was found. The enter instruction writes a key and an

associated item into the cache and the purge instruction deletes them.

The Memory Unit performs row operations to increase the memory’s bandwidth. The
Memory Unit fetches a row of the memory array and writes it into a special buffer, the
Instruction Row Buffer (IRB). This buffer acts as an instruction cache that holds the next
instructions to be executed. The MDP Control Unit initiates the fetching operation as
necessary. The Memory Unit enqueues messages arriving at the Network Unit by first
buffering them in one of the Queue Row Buffers (QRBs), and then writing that buffer into
memory. The QRBs are loaded into memory when they are full or if the last word of the

message has arrived from the Network Unit.

Frequent refreshing of the memory array is necessary to restore the charge in the memory
cells. The refresh operation has the highest priority, followed by writing the queues and
finally, the execution of one of the decoded memory instructions and the loading of the
IRBs.

2.2 Interface

The interface between the MU and other MDP units is necessary to specify the operation
to be performed, the information (data, instructions, or messages) to be accessed , and the
location in the memory array where information will be accessed. Global clocks and signals

are used to synchronize this interface. (i.e. how, what, where, and when to access the
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memory array.) The Memory Unit interacts with other MDP units as shown in Figure 2.1

The MDP Control Unit specifies a memory operation while decoding the instruction

stream. Operations are either word operations, associative operations or row operations.

Information used in memory operations is either data, instructions or messages. The
RALU transfers data between memory and one of its register through the data bus, the
C-bus, prior to or after performing an arithmetic operation on it. The CU executes one
of eight instruction in the Instruction Row Buffer at a time. The NU writes a word of a

message into one of a slot in the QRBs.

The AAU generates a word address when storing or loading a word, and a row address
when performing an associative operation or a row operation. Word addresses are generated
by adding an offset to a segr.ent base address stored in an AAU register. The AAU uses
a Translation Base/Mask register (TBM) to hash a key into a row address where the key's
associated items reside. It uses a Queue Head and Length Register (QHL) to generate a
row address where the queue buffers are stored. A refresh counter in the AAU points to

the address of the next row to be refreshed.

The MDP uses a two phase nonoverlapping clock as shown in in the top of Figure 2.2.
Memory reads and writes are executed in one clock cycle. Since the AAU decodes and
drives the address to the Memory Unit, and since information is transferred between MDP
units in synchronization with the MDP’s pipelined Control Unit, the execution of some de-
coded commands take several cycles. The memory executes the write, enter, purge decoded
commands and row operations in one cycle, the read decoded command in two cycles, and
the zlate and probe commands in 3 cycles. Figure 2.2 is a summary of the timing for each
operation providing no interrupts are generated during execution. In the figure, WData
refers to data to be written into the memory, RData refers to data to be read out of the
memory, and BData is a boolean value.

To insure nonconflicting operations and to regulate the interface of the memory with all

other MDP units, the MU asserts the following signals as necessary:
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1. The Ready Signal : A global wait signal that stalls the execution of the pipelined
instruction stream. It is asserted when performing operations that require more than
one cycle or when a refresh request or/and a queue buffer write request takes priority

over the execution of the current memory command.

2. The MDR Valid Signal: A signal that indicates that data stored in the Memory Data
Register is valid and is transferred on the C-bus.

3. The Squish Signal: A global control signal that halts any action that might change

the state of the memory or processor.
4. The Memory Trap signal: This is generated in case of an unsuccessful zlate operation.

5. The Parity Trap signal: This signal is asserted in case of an uncorrectable parity error

in reading the memory.

2.3 Memory Unit Elements

The functional block diagram of the Memory Unit is shown in Figure 2.3 A register-transfer
level simulation of the Memory Unit was developed as part of the MDP. The following is a
brief description of all elements of the Memory Unit. Appendix A describes this simulation

in more detail.

2.3.1 Memory Controller

The local memory controller supervises all activities with other MDP units and within the
Memory Unit.

The Memory Controller receives commands from the MDP Control Unit. It arbitrates
between the decoded memory commands, the queue write requésts. and the refresh requests
and sends the result of the arbitration to the AAU to generate the appropriate address. It

generates local memory commands to organize the data traffic between the C-bus, the




CHAPTER 2. MEMORY SYSTEM MICROARCHITECTURE 20
’ To Contoller
| instrucion Row Bufter 1
fow
|
::., Memory Array
X words
Loosl Row Bufler ]
From
Notwork
Quaus fow Guters 0, 1 Unit

Address
From
(LY

Retrogh

Couner Comparasor

Fram Loon T
Controller | Memery )
=="""1 Conwoller _
Key MDR
C-dus

Figure 2.3: Memory Unit Functional Block Diagram
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registers, and the local buffers. It also asserts the global signals when appropriate and

organizes the enqueueing operation with the NU.

2.3.2 The Local Row Buffer

On one phase of the clock, a row of memory is loaded into the local row buffer. On the
other phase, the local row buffer is written into the same memory row. Data in the local
row buffer is written to the Memory Data Register and is used to perform the associative
lookup. To enter data into memory, the contents of the local row buffer are modified before
writing the local row buffer back into memory. Writing back the original contents of the

row constitutes a refresh operation.

2.3.3 Memory Unit Registers

The memory has two different registers that are used to load/store data from/to memory.
The Key Register holds the key to be translated The Memory Data Register holds the
word to be written into the memory array when accessing the memory by index and the
associated item when using the memory as a cache. It obtains data from the local row

buffer and enables it on the C-bus when doing a read or a successful xlate.

2.3.4 Comparator

The comparator compares the data in the Key Register with the even words in the local
row buffer when executing an associative command. Two HIT lines, which are active high,
reflect the result of thie comparison. If both HIT lines are discharged while executing an
associative operation, the MU asserts the Memory Trap signal. Figure 2.4 illustrates this
operation. -
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2.3.5 The Address Decoders and the Colurain Selector

The address decoders and the column selector decode the 10-bit address from the AAU into
a memory location. The 8 higher bits of the address access one of the memory’s 256 rows,

while the lower 2 bits select one word out of four in that row when doing a word operation.

2.3.6 The Row Buffers

Row buffers speed up the execution of the instruction stream by reducing the memory cycles
required to write the queues or to fetch the next instruction from memory. The two queue
buffers hold words of a message before writing them into memory. The instruction row

buffer fetches a row of the instructions in memory.

Analysis of the row buffers’ performance is covered in Chapter 5.

2.4 Summary

At any point in time, the Memory Unit performs a word operation such as storing/loading a
word of data in memory, or a row operation such as loading instructions from memory into
the Instruction Row Buffer, writing the Queue Row Buffers, or refreshing a row in memory.
The MDP’s Control Unit specifies the operation to be performed, and the AAU generates
the appropriate address. The Network Unit writes messages to the queue buffers and the
Control Unit executes the fetched instructions in the IRB. All the interface is synchronized
using global clocks and signals.

A register-transfer level simulation of the MDP has been developed by the CVA group
at MIT to verify the microarchitecture. Appendix A describes the logic equations that

describes a register transfer-level simulation of the MU.
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Chapter 3

Memory Design

. we hold the waz to the perceptions and thoughts, and in that material
receive the impression of them as from the seal of a ring; and that we remember

and know what is imprinted as long as the image lasts . . .
— PLATO, in Dialogues, Parmednides, p. 191

The MDP memory is a 36K bit (36 bits/word) array. It is arranged in 256 rows by
144 columns. Each memory cell is a 3-transistor DRAM cell. Bit lines are precharged high
before reading the memory cells. The higher order bits of the address select a row in the
memory array. The lower order bits of the address select a word in memory when reading or
writing a word in memory. Comparators in the peripheral circuitry compare the two even
words in a selected row against a key when performing a set-associative operation. The
result of this comparison specifies the word(s) in the selected row to be accessed. Three row
buffers, an Instruction Row Buffer and two Queue Row Buffers, enable simultaneous access
to four row-aligned words of memory. A sense amplifier speeds up sensing the discharging
of the bit lines when reading the memory. The memory was fabricated using a 2um CMOS
double-metal layer process. It is designed to run at 15.5MHz.

This chapter describes the timing and the circuit design of the MDP memory. More

24
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details are provided in Appendices B and C.

3.1 Timing

The timing diagram of the memory is shown in Figure 3.1. The memory executes a write-
precharge-read operation every clock cycle. The duration of ; is limited by the time to
perform a compare followed by a write operation. ¢ is limited by the time to perform the

precharge and the read operations.

The address is decoded by the falling edge of ;. Precharging the bit lines and selecting
a row in the memory array occur simultaneously during 3. The precharge clock is low
for 6.4 ns. The row read signal has a rise time of 5 ns. The selected row is read from the
memory array by the falling edge of ;.

The row write signal is set high during the first 5 ns of the following ;. The result
of the compare operation is valid 12.5ns after the rising edge of ¢;,. Column drivers write
data back into the selected row after the necessary modification during the remainder of ¢,.
A new address and operation are decoded while completing the write cycle of the previous

operation.

3.2 Circuits

Figure 3.2 is a functional block diagram of the memory’s circuits. Appendix B contains
schematica illustrating a vertical slice through Figure 3.2 and the details of the control

circuitry. This section describes the circuit elements that determine the memory’s perfor-
mance.
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Figure 3.3: Three Transistor Memory Cell

3.2.1 The Memory Cell and Memory array

The memory array consists of 36K three-transistor memory cells. The 3-transistor memory
cell is shown in Figure 3.3. Binary information is stored as a charge on a capacitance, C,.
This capacitance is formed from primarily the gate capacitance of transistor T3, and the
diffusion capacitance of the drain of T; for a total of 37fF.

The row write signal is high during the write operation. Writing the cell is accomplished
by driving the data on the bit lines. The data is passed to the cell through 7} and stored
on C,. To read the cell, the bit line is precharged high and the row read signal is set high.
The bit line discharges through T3 and T; only if a logic 1 is stored on C,, the capacitance
of the bit line. The bit line discharges at a rate of 100 mV /ns.

The threshold voltage, Vi), of T limits the stored voltage on C,. Vi, is higher than the
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threshold voltage of an n-channel transistor with a grounded source due to the back gate

(body) effect. An increased voltage difference between the source and substrate increases

the back gate factor. SPICE simulations using a back gate factor, v , of 0.9 Vi increase
Vin of Ty to 2.1 Volts,

The memory cells require refreshing. The stored dynamic charge leaks off due to the
subthreshold leakage current of 7). The drain to source current, J4, ,of T; displays an
exponential behavior when it is at cut off similar to a reverse biased p-n junction. I,
increases with higher operating temperatures. The frequency of refreshing is a function of
the subthreshold current, the capacitances of the cell and the bit line, and the amount of
charge allowed to leak without losing the logic value stored in the cell. For example, SPICE
simulations allowing the storage voltage to leak to 1Volt, and operating at 70 deg C requires
refreshing every 0.335ms.

3.2.2 The Address Decoder

The higher order eight bits of the address select a row in memory. Address decoding is
performed at two levels. First, each pair of address lines is decoded into one of four address
select lines (AS4-AS19). At the second level, one of each four address select lines is input
to the row decoder. Figure 3.4 illustrates the two levels of address decoding.

A row decoder is a domino 4-input NAND gate. The row select signal is latched by
the falling edge of ;. The row write signal and the row read signal are driven across the
array in 4ns and Sns from the rising edges of ; and ; respectively. Figure 3.5 is a circuit
schematic of the row decoder.

3.2.3 The Sense Amplifier

Sense amplifiers speed the detection of a change in voltage on a bit line when it is discharging.

The sense amplifier used in the MDP memory is a charge sharing amplifier [DG85]. This
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Bit Line | |
1 T 4 D"

Figure 3.6: The Sense Amplifier Circuit

circuit is illustrated in Figure 3.6. The bit line is precharged to V,,,, a few hundred mV
above V,.;. The other side of the sense amplifier is precharged to Vpp. Tyense conducts
when the bit line voltage drops by the threshold voltage of Tyense below Viqs. (i.e. Veonduct =
Vies = Vin). When Typen,e is conducting, Ciittine appears large compared to Coense A0d Viense
quickly tracks V}

The high noise margin of this sense amplifier, N M), is equal to the difference between
the initial precharge voltage on the bit line, Vj,,, and the voltage at which T,ense starts

conducting, Veonduct-

Precharging the bit line to a {roltage, Vpre, closer t0 Vionduce reduces the noise margin,
N M), but allows T,en,e to conduct faster. This improves the speed at which AV}, is sensed.
The graph in Figure 3.7 illustrates the trade off between the .noiu margin and the speed at
which T,n,e conducting for two different values of Vore.

In addition to speeding the sense amplifier, precharging the bit lines to a lower voltage

T T R R R R R R R R R R T R RO
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Figure 3.7: Precharge Voltage, V,,,, vs. High Noise Margin, N M),

reduces power dissipation of the array by a factor proportional to V2.

The inverter connected to the sense amplifier has a trip point equal to Veonduct. It also
corrects the logical value of the data read from the memory array before writing it back

into memory.

A sense amplifier for the MDP memory was designed with a noise margin of 500mV.
Vres is set to 3.5 Volts and the bit lines are precharged to 3 volts. The read operation is
performed in 9.25ns.

3.2.4 Precharge Circuit

A dummy bit line is used to generate the precharge clock. Figﬁre 3.8 illustrates the circuit
and the waveform of $pre. The dummy bit line is driven low during ¢1. Fpre goes low with
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the rising edge of ¢3. The bit lines are precharged to Vire through 40um wide p-channel
transistors. The effect of the rising dummy bit line is propagated to set Ppre high.

Design Alternative :

The precharge operation described above is completed in 18.4ns. Two thirds of the
precharge operation is the delay in distributing Ppre to the precharge transistors. An alter-
native design is to use the p-channel of the column drivers as precharge transistors. This
circuit is shown in Figure 3.9. Optimizing the circuit and increasing the width of the p-
channel pull-up circuit from the original 164 m to 30um, would allow charging the bit line in
7.5ns. The delay through the feedback path to turn the precharge off is 8ns. This increases
the operating frequency to.16.67MHz. Other advantages include the decrease in layout area

especially of the precharge transistor’s drivers.
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3.2.5 Power Dissipation

Precharging the bit lines dissipates most of the power necessary to operate the memory.
Charging a bit line to 3 Volts at 15.5MHz, dissipates 0.40mW/bit line. Worst case dynamic
power dissipation occurs when all the bit lines are precharged high for a total of 0.6 W.

3.2.68 Comparator

The comparator is used to compare the even words in the selected row with a key when
performing a set-associative operation. The circuit used is precharged XOR circuit shown

in Figure 3.10

Each bit in an even word bas a bit comparator. The 36 bits in each even word share

the precharge transistor. The result of each word comparison, the hit; line, is discharged if
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any bit in the key mismatch the prospective bit in that word.

The worst time delay occurs when only one bit in the key mismatchs the prospective

bit in an even word. In that case, the discharge time of the Ait lines is 5.5ns.

3.2.7 Column Selection

While row selection generates the y-address of the memory array, column selection generates
the z-address. Column selection is a function of the two low order address bits, the Ahit lines,
and the operation being executed. Selecting a group of columns specifies a word, a pair of
words, or a row to be operated on. The column circuitry in the memory is presented in

detail in Appendix B.

3.2.8 The Row Buffers

Each row buffer consist of 144-cell register. The Instruction Row Buffer (IRB) is placed at
the top of the memory array to facilitate its access. A replica of the sense amplifier and
a clocked inverter, is used to read the data into the IRB. Data routed to the Queue Row
Buffers (QRB) are multiplexed on a 36-bit data bus. The data in the buffer is driven on
the bit lines through clocked inverters,

3.3 Layout

The memory cells are arranged in 256 rows and 144 columns. The memory array and its

peripheral circuitry occupy 16.5 MA? and 7.2 MA%. A p* guard ring surrounds the array to

reduce the injection of minority carriers into the P-well.

Bit lines and ground lines run vertically in parallel in the first metal layer. Row read
lines and row write lines are routed horizontally in polysilicon. They are strapped to the

second metal layer to reduce their resistance.
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To reduce the area of each cell, horizontally adjacent cells share the contact to the
ground line. Vertically adjacent cells share the contact to the bit line. Fig 3.11 illustrates
the layout of a 4 adjacent cells. To compact the layout of the peripheral circuitry, the bit
lines are interleaved so that bit; of each word in the row are grouped together.

The layout of the peripheral circuitry was challenging. To maximize the density of the
layout, the circuitry for address decoding and row signals had to pitch match vertically with
the memory cells. The column selection circuitry had to pitch match with the horizontal

pitch of the memory cell.

3.4 Summary

This chapter covers the design of prototype MDP memory. The memory is 256 rows by
144 columns. Each memory cell is a 3-transistor DRAM cell. Peripheral circuitry allow

accessing the memory by index or as a set associative cache. The memory cycle is 64 ns.

The logic design was checked using a logic simulator, RNL. Timing was verified through
the circuit simulator, SPICE. This memory design reports typical speeds that were achieved
by averaging the results of simulations using the fast/fast and slow/slow process corners.
The slow/slow process corner performs at half the speed of the fast/fast process corner.
Layout was done through the layout editor Magic. The 2um CMOS process electrical
parameters used in SPICE simulations are listed in Appendix C. Schematics are found in
Appendix B.
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Figure 3.11: Layout of Four Neighboring RAM Cells




Chapter 4

A Prototype Memory

In plucking the fruit of memory, one runs the risk of spoiling its bloom.
— JosePH CONRAD, in The Arrow of Gold, 1919, Author’s Note

A prototype memory chip was fabricated to evaluate the design presented in Chapter
3. To function correctly, every memory cell should be able to store a binary value. The
decoder circuit should access every memory cell when correctly addressed. Storage nodes
should hold charge until the next refreshing cycle.

This chapter describes potential problems in the prototype memory and the implemen-

tation of on-chip test circuitry. The last section includes the results of testing the prototype
memory.

4.1 Potential Problems

This section describes some potential problems with RAM structures. Other problems
include faulty address-decoding and column selection that prbhibit accessing the desired
data.

40
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4.1.1 Capacitive Coupling

Capacitive coupling in the memory array could cause altering of the stored data or increasing

the need for a refresh cycle. Capacitive coupling includes:

1. Parasitic Coupling:

The small cell area increases the effects of parasitic coupling. For example, when
reading a memory cell, the read transistor, T3 in Figure 4.1, is conducting and the
bit line is precharged to Vj,,. Charge is shared between Ciistine and the capacitances
of the source of T3, Ca3, and the drain of T3, Cy¢3. The gate capacitance of T3, Cpz,
has a lower value when it is non-conducting due to the decreased number of inversion
layer electrons. The coupling between drain of T; and its gate could yank this voltage
high enough to turn on T;. The sense amplifier would sense the small discharge in
the bit lines and read the data as a high. To minimize this parasitic coupling, the

perimeter of Cy47 Was minimized in the layout.

2. Inter-bit line Coupling:

Faulty reading or writing of memory cells could occur because of interaction between
cells that share signal lines or bit lines. Usually such interactions are caused by
repeated patterns.

For example, writing a 0 in a memory cell, and writing 1s repeatedly in other cells
in the same column could cause an increase in the subthreshold current. Coupling
between a deselected row write signal and a high-driven bit line could yank the voltage
on the gate of T of the memory cell. The increase in subthreshold leakage current
demands more frequent refreshing. If the yanked voltage reaches above the threshold
voltage of T, data in a deselected row could be modified. The write row signals are

always driven (i.e. not floating) to minimize the effects of coupling.
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Figure 4.1: Parasitic Coupling
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4.1.2 Soft Errors

A soft error is the change in the stored data or logic value. Soft errors in VLSI structures
are mainly caused by alpha particles. Alpha particles are doubly ionized He atoms emitted
during the radioactive decay of uranium or thorium which is found in VLSI packaging
material. Soft errors are especially present in DRAMs because of the dynamic charge
stored in each cell and the high packing density of the DRAM structure.

As an alpha-particle hits an active device and travels through the material, electron-hole
pairs are generated. N-regions in the memory cell collect electrons. The major collection
mechanisms are drift and field-funneling [Bre88]. Drift is the movement of carriers due to
an electric field. Field-funneling is the modification of the electric field due to drift. The
soft error rate is a function of the collection efficiency and the memory cell’s storage area.

If the charge collected exceeds the critical charge to store a logic 1, Vh, a soft error will
occur.

When an alpha particle hits the drain or gate of T}, a track of electrons and holes is
generated. The electrons are carried into the drain by the horizontal electric field. They
neutralize the positive charges stored on the storage capacitance. If the electrons collected
by the drain of T; causes the stored voltage to drop below the threshold voltage of T3, a
soft error will occur.

A typical alpha particle of 3.6MeV generates 1.4 x 10° electron-hole pairs. The critical
voltage that would cause a soft error is 2.0 volts. The critical charge is 0.462 x 10° holes.
An alpha particle hit on the drain or gate of T; would cause a soft error. Assuming an alpha
particle flux rate of 0.1 a / ecm?.A, and that on average half the alpha particle hits cause a

soft error, we expect an error rate of 5.4 x 10e-3 errors/h. Error detection and correction

circuitry would eliminate those errors.
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4.2 Test Circuits

The purpose of the on-chip test circuitry is to trace internal wave forms and to facilitate gen-
erating test vectors to test for problems explained in Section 4.1. All the circuit schematics

of the test circuitry are illustrated in Appendix D.

4.2.1 Voltage Comparators

Five clocked voltage comparators were placed on the memory test chip. The purpose of
the comparators is to provide an on-chip sampling scope to observe important internal
waveforms. OQutputs of the voltage comparators were brought off-chip. The comparator
was designed to detect a difference of 110 mV between its input voltages. A bit line, the

dummy bit line, the precharge clock, the row signals were inputs to the comparators.

The advantage of using comparators is to obtain an accurate measure of the internal
wave forms. The capacitance seen by the comparator’s output causes a delay in the result
of the comparison. It does not distort the original signal. Probing and routing the desired
signal to output pads distort the signals by loading them with undesired capacitances.

4.2.2 RAM Test Patterns
Goals of Test Patterns

We have chosen three different test patterns that check for different possible malfunctions
in the memory array. These patterns include a Checkerboard pattern, the Walking 1's and
0’s pattern, and a random pattern [BF76).

The checkerboard pattern tests for possible interaction. between adjacent rows and
columns of the array. One logic value is written in all the even cells in a row, and the

complementary logic value is written in the odd cells. All memory locations are verified for

T T AR ", |
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the proper value. This test is repeated for the two complementary patterns.

The Walking 1's and 0's pattern checks that every memory cell can be set to both
logic values without influencing any other adjacent cell. It also checks for correct address
decoding. The test starts be setting every memory cell to 0. One memory cell is altered at
a time. After every alteration, the whole memory array is read. The test is repeated for

complementary logic values.

Although the two patterns above could be used to measure the memory refresh time, a
random pattern is implemented to measure this refresh time. A pseudo-random pattern is
written into memory. The memory is still for the expected refresh period. The memory is
read check for changed values.

Implementation of Test Patterns

An on-chip circuit was designed to generate the different test patterns and addresses at
which data is to be written. Data comparators are used to compare a certain test pattern
with data read form memory. An address register and comparator hold and compare a
certain address with the current address. The control pins for these circuits are routed to
input pins. The results of the address and data comparators are routed to output pins. An
off-chip ROM uses these pins to generate the correct test sequence. Off-chip sequencing
eases sequencing the test patterns and allows refreshing when needed.

4.2.3 The Precharge Circuit

In case of the failure of the self-timed precharge circuitry, an off-chip precharge clock was
provided. A select pin allows the bit lines to precharge using this off-chip clock or the
on-chip generated precharge clock. The precharge phase occurs before the read phase, 3,
as shown in Figure 4.2.
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4.3 The Test Chip

A prototype memory was fabricated using a 2u double-metal CMOS MOSIS process. It
was packaged in an 84 pin package. A picture of the chip and it’s floor plan are shown in
Figures 4.3 and 4.4. A listing of the pinout is provided in Figure 4.5.

4.4 Testing the Prototype

A test fixture was built for the prototype memory chip. A Digital System Analyzer (DAS)
generated the clocks and the control signals and collected digital data. An oscilloscope was

used to observe output waveforms.

The bidirectional Data pins (pins 45-62, and pins 65-82) prohibited generating and
acquiring data using the DAS’ pods. Therefore, the DAS data vectors were written through
buffers (6 RCA CD74HCT245Es) to the memory chip when writing data. Data was acquired
at the chip’s data pins when reading data.
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PIN  Description PIN Daacription
@ Sel_3
; zoon'm' Comparator Sampiing Clock a“ En Data pads as outputs
3 ; 4 Data 36
T -
s : a7 Data.34
. 5 @ Data33
2 re P Data32
8 ore 50 Data31
9 Sense Amplifier Reference Voitage :; g::g
10 Substrate Bias 53 Dats.28
11 Switch-onvoft-chip precharge 54 Data 27
12 GND 5
13 Switch-on/oftchip Address pod Oata, 26
Generation 57 g::zf
@ 14 Resst Addrass Counter. / Write Row Signal 2 2
o 15 increment Address Counter / Read Row Signal 50 3“23
@ 16 Enable into Address Register / Bt ine pod 22
® 17 Compare Adcress / Dummy bit line s o)
18 Add.9
19 Add.8 62 Oata 19
20 Add.? 63 GND
21 Add.6 84 VDD
22 Add.S 5 Data 18
23 Add.4 6 Data17
24 A3 &7 Data.16
25 Add.2 s Data.15
26 Add.1 & Data.14
27 Add.0 70 Data.13
28 Result of Address Compare n Data.12
29 Cout of Address Counter 72 Data.11
30 GND 73 Data.10
a1 VDD 74 Data
32 Sei_A s Datas
33 Sei B 76 Data?
34 Sd:c n” Data8
® 35  Resettest Pattern / Precharge Clock e Oata5
36 Shift LSR / Hito ™ Data.4
a7 Shift RPG / Hit1 80 Data3
as Result of Data Compare 81 - Data2
3 Count of LSR 82 Data.1
40 reset random 83 GND
41 Sei_1 84 Reference Voltage for
42 Sel_2 Voitage Comparator

@ (Outputs of voltage comparators)

Figure 4.5: Test Chip Pinout
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Testing the chip was partially successful. The wave:orms of the read row signal and the
write row signal were observed through the voltage comparator’s outputs. Figure 4.6 has
pictures of 93, and the read row signal when it is at 1 and 4 Volts. Figure 4.7 is a picture of
1, and the write row signal when it is at 1 and 4 Volts. The measured delay between the
row signals and the clock edges (29.62 ns and 31.60 ns) were slower than SPICE simulation
results. This is mainly due to the differences in Tox, the oxide thickness, between the
SPICE deck used for simulation (Tox ranged between 22.5 and 27.5 nm) and the MOSIS
parametric test results (Tox is 40.6 nm). Figure 4.8 has multiple-exposures of the read
row signal with V,, of the voltage comparator set at different voltages. From measurements
and from these photgrahps it is evident that the row signals have a very short rise time.

The address and data comparators used in the test circuits operate correctly.

An unplugged P-Well in the column select control circuitry was fatal to writing and
reading data from the memory array. We were unable to observe the bit lines due to a
4) opening in the routing of the output of the bit line voltage comparator. In the test
circuitry, a design rule violation that was not detected by the layout design rule checker
caused a failure in the random pattern generator. A misconnection in the Walking '0 and

'1 generator produces a wrong pattern.

4.5 Summary

This chapter describes potential problems in the memory due to coupling capacitances
and soft errors. Voltage comparators and pattern generators and comparators were placed
on-chip to test for errors. A prototype memory was fabricated and tested. An error (an
unplugged P-Well) in the control circuitry prevented accessing the memory array. The row
decoder and other parts of the test circuitry were functional. A corrected version of the

memory prototype will be sent for fabrication within the next two weeks.
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v = 1volt, ¢2

m t

Read Row Signal

v = 4Volt, ¢2
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Figure 4.6: ©; and Read Row Signal Waveforms
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Figure 4.7: ¢, and Write Row Signal Waveforms
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Figure 4.8: Multiple-exposure of Write Row Signal with Different V,,




Chapter 5

Evaluation of Architectural
Features

Four for the price of one!

— STORE ADVERTISEMENT

The MDP memory microarchitecture introduces a concept of row operations. A row
(four words) of memory is fetched simultaneously through special row buffers. Row fetch-
ing requires only one memory reference. Fetching four words sequentially requires four

references.

Each buffer costs an area 0.7 MA2 the complexity of managing it. This chapter evaluates
the performance of the Instruction Row Buffer and the Queue Row Buffer.

5.1 The Instruction Row Buffer
A row of memory is loaded into the Instruction Row Buffer (IRB) while executing the in-

struction stream. This operation increases the memory bandwidth by making more memory

cycles available to the executing program.
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Two factors influence the performance of the IRB: the basic block size and it’s alignment
in a memory row. A basic block is a section of contiguous code which does not branch when
executed. Both branching and short code require flushing the IRB frequently. Therefore,
better performance is achieved as the basic block size increases. The beginning of a block
is aligned in any slot in the row with equal probability. The effects of the alignment are

more noticeable for smaller block sizes.

The following equations are used to calcuiate the number of row fetches, RFetches.
BCA and WCA refer to best and worst case alignment respectively.

% ifwmodd=0

RFetchespca = { ¥ 41 otherwise

RFetchesgc, if(w~1)modd =0

RFetcheswca = { RFetchespca + 1 otherwise

The probability of worst and best case alignment is a function of the number of words
in a block.

(w=3)mod 4

P(BC) = 1

P(WC) =1~ P(BC)

Figure 5.1 illustrates the use of these equations for block sizes 5-8.
The gain in row fetching is the fraction of words that are fetched from the IRB without

memory access, j.e.

w — RFetches
w

Gain =
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BockSize = § L ICICIC 0|00 LIl [ )
No. Fetches = 2 L] [ 10 0j|0|0 0|0j0)0
BC 4 4 [ Y )
No.Fotd'\Ovec- 2 P(Best Case) = 1
BockSize = 6
No. Fetches™= 2 0|0[|0!0 o|0]e (10 ®
- OO0 olel® olelel® elelele
No.Fotdw“ 3 T @
P(Best Case) = 0.75 P(Worst Case)= 0.25
BlockSze = 7 0/|0|0|0 0|00 oo [
No. Fetches = 2 0j0}0 /0|00 0l|0j0]|® L IOI0I0
BC @ L JL ]
X =3
NoFowho“s'c
P(Beat Case) = 0.50 P(Worst Case)= 0.50

0/0|0|0 0i0|0 L 30 (
BlockSze = 8

0/|0}0/® 0/|0/0]0 0/0|0|0 9l|0|0|0
No. Feches - 2 L o ole olefe
No.Fnd\wc. 3

P(Best Case) = 0.25 P(Worst Case)e 0.75
BC : Best Case
WC: Worst Case Figure 5.1: Some Block Sizes and Possible Alignments
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Figure 5.2 is a graph of the gain vs. different block sizes. From this graph, we can

conclude:

1. The maximum gain using row fetching is 75%. (i.e. Fetching every four words require

at least one memory reference.)

2. For average block sizes (5-10 words) , the minimum gain is 50%. The IRB eliminates

at least half the memory references.

5.2 The Queue Row Buffers

Messages arriving from the node’s network are enqueued in one of the Queue Row Buffers
(QRB). The buffer is written into memory when it becomes full or when the network signals

an end of a message. Similar to the idea of the IRB, the QRBs reduce the memory cycles
needed to enqueue a message.

The performance of the QRBs is a function of the number of words arriving from the
network per cycle. Once a message’s first word arrive, it is very likely that the remainder
of the message follows at a rate of 1 word/ cycle. The bidirectional nature of the commu-
nication channels (DS87] could cause a slower arrival rate of 0.5 word/ cycle. Therefore,

decreasing memory accesses to write new messages permits the execution of more memory

instructions if contained in the executing program.

When the processor is idle, enqueueing a message via thé'QRBa delays execution by 4
cycles. Simulation results [Son88] indicate that the message arrival rate at a node is 0.0014

messages/ cycle in a 1-K node machine with a network capacity of 45%. i.e. A message (6
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- = = @Gain for Best Case Alignment
----- Gain for Worst Case Alignment
— Average Gain

0 § 10 15 20 25 30 35 40
Basic Block Size

Figure 5.2: Performance Gain of IRB vs. Basic Block Size
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words) is expected to arrive at a node every 714 cycles. Since an average program'’s length

ranges from 10-20 instructions, it is likely that messages arrive at idle processors.

5.3 Summary

The purpose of row operations is to reduce the number of memory cycles used to fetch
instructions and enqueue messages. The IRB effectively reduces the number of cycles needed
to fetch instructions. The QRBs improve performance when processors are in non-idle
states. Network analysis shows the likelihood of a processor being in an idle state when
a message arrives from the network. Optimization of message handling by direct word

enqueueing rather than the QRB’s is recommended in this case.




Chapter 6

Conclusion

I’ll note you in my book of memory.
— SHAKESPEARE, in Henry IV, Part 11, iv, 101

This thesis reported the design and testing of the Memory Unit for the Message-Driven
Processor (MDP). The memory organization provides hardware support for both indexed

and set-associative access. Indexed access includes word access and row access. Row access
was developed to increase the memory’s bandwidth when enqueueing messages from the

network or fetching instructions. The associative access provides an efficient method of
translating virtual addresses into physical addresses.

The memory operates at 15.5MHZ. It uses two nonoverlapping clocks. The precharge
clock is generated via self-timed precharge clock while decoding the memory address. A
sense amplifier allows reading the memory in 9.3 ns. Writing the memory occurs in 10 ns.
Comparators in the peripheral circuitry implement the sat-associative operations.

Testing of a prototype memory chip verified the functionality of the address decoder.
An error in the layout of the control circuitry (unplugged P-Well) prohibited routing data

to the memory. A corrected chip will be sent for fabrication.
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Possible Improvements

Several improvements of the memory design are possible. Circuit design improvements
include sharing the precharge transistor and the column driver circuitry (see Section 3.2.4)
allow an operating frequency of 16.67 MHz.

Improvements in the fabrication process could produce a faster and more compact mem-
ory. A buried contact in the RAM cell reduces the interconnect area, and accordingly, the
cell area. Reducing the process’s features size while maintaining the storage capacitance
allows higher operating frequencies. Implementing error detection and correction circuit

combats parity and soft error problems.
rther rch

Areas that will be further be pursued include completely verifying the functionality
of the memory design and integrating the memory with the rest of the MDP Units on a
single-chip to produce a fast processing node for the Jellybean Machine.

An architectural idea that deserves further researching is the MDP cache. Several
parameters such as the cache size, associativity, TLB mapping algorithms, and replacement
algorithms influence the performance. Real evaluation of the cache should be based on

extensive trace-driven simulations with “real” workloads.




Appendix A

Register-Transfer Level
Simulation of MU

This appendix contains the logic equations that are used in the Memory Unit’s register-
transfer level simulation. The equations refer to the Memory Unit Functional Block diagram
shown in Figure 2.3. They are organized in 4 groups to be synchronized with the MDP’s

clock edges shown in Figure 2.2.

Phase 2, Falling Edge :

Cycle,, Cycle;, and Cycles are generated to determine which cycle of the command is

being executed.

Cycles = Cycle;-(XLATE + PROBE)
Cyclez = Cycle; -(READ + XLATE + PROBE)

Cycley = Ready+ Cycles + Cycle; +
(Ready - (Refresh.request + QRBOW RIT E + QRB1.WRITE))

Phase 1, Rising Edge :
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o Qrblrequest = QRBI.WRITE - Refresh_request

¢ Qrb0request = QRBO.WRITE - Refresh_request - QRBIWRITE

o Refresh_delay = m - Refresh_request

o Qrblempty = Cyclel - Qrbl.request

o If (Qrblempty) then Local_Row_Buffer = QRB1

o Qrb0.empty = Cyclel - Qrb0.request

o If (Qrb0.empty) then Local Row Buffer = QRBO

o If (Cycle; (XLATE+PROBE+ENTER+PURGE)) then Key_Regsiter = C.bus
o If (Cycle; - WRITE then MDR = Local Row_Buf fer[cadd)

o If (Cycle; - READ - squish)then Local Row.Buf fer{c.add] = MDR

o Hit0 = Compare - (Local Row_Buf fer[even_word0) = Key_Register)

¢ Hitl = Compare - (Local Row_Buf fer[even_wordl] = Key_Register)

o If (Compare - XLATE - Hit0) then MDR = Local_Row.Buf fer(odd_word0)
o If (Compare - X LATE - Hitl) then MDR = Local_Row_.Buf fer(odd_.wordl]
e MTrap = Compare- XLATE - it - Hit0

e If (Compare - PROBE - (Hit0 + Hitl) then MDR = true

o If (Compare - PROBE - Hitl - H110) then MDR = false

e If (Compare- ENTER- Hit0) then Local Row_Buf fer[odd.word0) = MDR

¢ If (Compare- ENTER- Hitl) then Local Row _Buf fer[odd_.wordl)= MDR
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i o If (Compare- ENTER - Hitl- Hit0) then Local_Row_Buf fer{odd word(random)] =
} Key_Regsiter and Local Row_Buf fer[even_word(random)] = MDR

o If (Compare - PURGE - Hit0) then Local _Row_Buf fer(even.word0] = nil

e If (Compare - PURGE - Hitl) then Local _Row_Buf fer(even.wordl] = nil

¢ Ready = (Cyclel-(Refresh.request + QRBOWRITE+QRBI.WRITE+READ+
XLATE + PROBE)) + (Cycle2- (XLATE + PROBE))

e MDR.Valid = (Cycle2-squish- READ) + (Cycle3 - squish - (XLATE + PROBE) -
(Hit0 + Hitl))

o Memory(Radd) = Local Row.Buf fer

Phase 1, Falling Edge :

e Row.add = (Memory_Address » 2)

o Column_add = Memory_Address <0:1 >

Phase 2, Rising Edge :

o Local Row Buffer = Memory[R.add]
e Hit0 =1

e Hitl=1

MTrap=0

READY =1

Local_Row_Buffer = Memory[Row.add]

Refresh.request = (refresh_counter = 16) + Refresh.delay)
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4 o If (Refresh.Counter = 16) then Refresh_Counter = 0
X o If (Refresh.Counter # 16) then Refresh.Counter = Refresh_.Counter + 1

o If (Qrbinsert - Priority.1)) then QRB1{Qrb_select] = IN Net

o If (Qrb_insert - Priority.0)) then Q RBO[Qrb.select] = IN _Net

If (Cycle, - READ) then Local Row Buf fer[Column.add] = MDR

If (Cycley - (WRITE + ENTER)) then MDR = Cbus

e Compare = Cycle; - (XLATE + PROBE + ENTER + PURGE)

vy

If (Compare) then MDR = C_bus

-
®

If (IRB_Load) then IRB = Local Row._Buffer




Appendix B

Timing Diagram and Schematics
of The MDP Memory

The table on the following page identifies the symbols and values for that figure. A detailed

timing diagram of the memory array is shown in Figure B.1.

Figure B.2 is a slice through figure 3.2. Figure B.3 is the column select circuitry.
Figures B.4 and B.5 are the control signals used in the memory.
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Symbol | Definition Delay (ns)
o1 phase 1 28.5
to2 phase 2 28.0
tar address hold time 6.7
toal Ppre turn-on time 6.0
ton Ppre hold time 6.4
tpeh | Ppre turn-off time 6.0
trrs read row signal set-up time 5.0
trn | read row signal hold time 23.0
turs write row signal set-up time 5.0
turh | write row signal hold time 23.0
tes compare set-up time 4.5
tee compare evaluation 8.0
| tey compare result valid time 18.0
tecas associative column-sgelection set-up time | 19.5
tecsh | associative column-selection hold time | 9.0
trces read column-selection set-up time 19.5
trcsn | read column-selection hold time 9.0
tucss | write column-selection set-up time 19.5
tweceh | Write column-selection hold time 9.0

J Table B.1: Memory Timing Table
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Figure B.1: Memory Timing -
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Figure B.2: A Slice in Figure 3.2
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Appendix C

Electrical Parameters of a 2 ym
CMOS Process

RIS IIIIY RS PRI P I RS S RS T RIS R A R 2R 242 D a2l il edtldydydd)

. Slovw Slovw
RGP RG AR OB SRS RS S SRS 0E SRS RSV EEESES VSRS ES ARV USROS UBSE RS VSRS OEE S

.MODEL NSS NMOS LEVEL=3 RSH=0 TOXs27SE-10 LD=.1E-6 XJ=.14E-6
+ CJ»1.6E-4 CJSW=1 .8E-10 UO=550 VIO=1.022 CGSO=1.3E-10

+ CGDO=1.3E-10 NSUB=4E15 NFS=1E10

+ VMAX=12E4 PB=.7 MJ=.5 NJ)SWs.3 THETA=.06 KAPPA=.4 ETiAs. 14
.MODEL PSS PMOS LEVEL»3 RSH=0 TOX=27SE-10 LD=.3E-6 XJ=.42E-6
+ CJn7.7E-4 CJSWs5.4E-10 U0=180 VT0=-1.048 CGSO=4E-10

+ CGDO=4E-10 TPG=-1 NSUB=7E15 NFSsiE10

+ VMAX®12E4 PB=.7 MJ)=.5 MJSW=.3 ETA=.08 THETA=.03 KAPPA=.4

.

-

deltalpoly = -.125um deltaW = .9um (one sided inward)
L J
SRESTISEASEIRES IS LSS50 AERLLELB LI5S0 ES0LEERESEESREREAEOSESE
. Fast p-type Slowv n-type

SIS LS LSS0 SRS RSERS SRS SESOREES .8 L2 22 1] L] sosses

.MODEL NFS NMOS LEVEL=3 RSH=0 TOX*250E-10 LDs.1E-6 XJ=.14E-6
¢+ CJ={.6E-4 CJSW=1 .5E-10 UQ=550 VTO=1.03 CCSOe1.33E-10
+ CGDO=1.33E-10 NSUB=4E15 THETA=.06 KAPPAs=.4 ETA=.14

3

. e



————

e

APPENDIX C. ELECTRICAL PARAMETERS OF A 2 uM CMOS PROCESS 74

+ VMAX®12E4 PBs.7 MJe.5 MISW=.3 NFS=iE10

.MODEL PFS PMOUS LEVEL®3 RSHs0 TOX=250E-10 LD= .4E-6 XJ=.6E-6
+ CJsTE~4 CJSW=4 SE-10 U0=220 VTO=-.68 CGS0=5.5E-10

+ CGDO=5.SE-10 TPGa-1 NSUBsSE15 ETA=.08 THETA=.03 KAPPA=.4
VMAX=17E4 PB=.7 MJ=.5 MJSW=.3 KFS=1E10

+

s deltalpoly = Oum deltaWps .7um deltaWnes.8um (one sided inward)
SESABESFS SRR SREER SRS EEESES L LSRR HSEEL VSR EBEPELERESEE LRSS R AV G S SRR
. Fast p-type Fast n-type

PRSP ESPPERRIBERESRESS IR ELEHR AL SRS SRS LS DS LS A SRSV EP LR USRS S ST 0SB NEN
.MODEL NFF NMOS LEVELs3 RSH=0 TOX=226E-10 LD=. 15E-6 XJ=.21E-6

+ CJ=1.0E-4 CJSW=1 25E-10 UO=650 VT0=.628 CGS0=2.3E-10

+ CGD0=2.3E-10 NSUB=3E15 THETA=.06 KAPPA=.4 ETA=. 14

+ VMAX=17E4 PB=.7 MJ=.5 MISW=.3 NFSsiE10

.MODEL PFF PMOS LEVELs3 RSHe0 TOX=225E-10 LD=.4E-6 XJ=.6E-6

+ CJ=6E-4 CJSW=3.7S5E-10 U0=220 VTO=-.668 CGS0=6.2E-10

CGDO=6.2E-10 TPG=-1 NSUBs=SE15 ETA=.06 THETA=.03 KAPPA=.4
VMAX=17E4 PB=.7 MJa.5 MJISW=.3 NFSs1E10

* 4+ 4

deltalpoly = .125um deltaW = .6um (one sided inward)

]
FEBRENSREISOREPSRPERRR SR EEREER S SRS SRS LS SRR LSS ESRSE RS SRR RESEEESBIEREE
* Slov p-type Fast n-type
SEXSSRBESLIROSERRNEEVESELLE RS L L LU LGRS S EESRE LB SRS LS LSRN RS SRR R AR
.MODEL NSF NMOS LEVEL=3 RSHe0 TOX=250E~10 LDs=.1i5E-8 XJ=.21E-6

+ CJ=1.0E-4 CJSW=1.5E-10 U0=660 VT0=.826 CGSO=2E-10

+ CGDO=2E-10 NSUB=3E15 THETA®».0€ KAPPA=.4 ETA=.14

+ VMAX=17E4 PB=.7 MJw.§ MJISW=.3 NFSe1E10

.MODEL PSF PMOS LEVEL=3 RSH=0 T0X=280E-10 LD-.3E-G XJ= . 42E-6

¢+ CJ=T7E~4 CJSW=4 .SE-10 U0=180 VT0=-1.049 CGSO=4.2E-10

+ CGDO®4.2E-10 TPGs-1 NSUBS7E15 ETA=.06 THETA=.03 KAPPA=.4

+ VMAX«12E4 PB=.7 MJs.5 MJSW=.3 NFS=1E10
*

———— ——
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* deltalpoly = Oum deltaWp = .8um deltaVns.7um (one sided inward)

.
SESHRSSREREL RS SR SR EEEEEEE S LS SIS S LS SES S LSS AEEREESSEESE SRS ERE RS0 S




Appendix D

Schematics for the Test Circuitry

This appendix contains schematics of the on-chip test circuitry. Figure D.1 is the voltage

comparator.

Figure D.2 and Figure D.3 are a bit-slice of the pattern generator and its control circuitry.
It consists of a random pattern generator, RPG, a linear shift register , LSR, a constant
generator, a comparator and an output driver. The input to LSR’s least significant bit is
high when Reset_pattern is high, low otherwise. The input to the RPG’s least significant
bit is high when Reset_pattern is high. If the reset signal is low, the input is the exclusive-
or of 5 register bits which generates 234 different patterns. Signals Sel_A, Sel B, Sel.C,
Reset _Pattern, Shift RPG, Shift.LSR, and Compare_Data are off-chip inputs. The result of

the data comparison is an off-chip output.

Figure D.4 and Figure D.5 are a bit-slice of the address generator and its control circuitry.
It consists of an incrementer, a register, and a comparator. Inputs Reset_Address_Generator,
Enable_Address_Register, Increment_Add.Generator, and Compare_Address are off-chip sig-
nals. The carry out of the most significant address bit and the result of the address com-

parison are connected to the outside world.
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Figure D.1: Voltage Comparator
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